

Flexible Routing with GraphHopper
And how it can be misused for data analysis

Peter Karich SOTM 2019

 Co-Founder GraphHopper

Who am I?

GraphHopper company
What is our mission?

Demo Link

GraphHopper Routing Engine

● Open Source under Apache License 2.0

● Java library and web service for routing

No maps, no geocoding

● It is fast and memory efficient

● Works with OpenStreetMap data, GTFS and others

● Algorithms: Dijkstra, A*, Landmarks, CH

● Out of the box: for walking, car, bike, public transit, …

Selected New Features

Vector Tiles Endpoint
#1572

Shortest Path Tree Endpoint
#1577

● CSV with lat,lon and previous coordinate

● Feedback from community

● Example in R lang:

Use GraphHopper For Data Analysis

1.Impact of bridge construction on road network. High
precise “Isochrones”: draw shortest path tree directly in
browser. Simulate “what if” scenarios

2.Level of Traffic Stress & Highlight curly roads

3.Speed limit debate regarding safety

4.Plan location of new fire station

5.Find closest restaurants by driving time

& Find closest restaurants from a route

1. Impact of bridge construction

Avoid highway=motorway

Uses /spt endpoint

2. Level of Traffic Stress For Biking

● Avoid biking on
dangerous roads

● Prefer bike routes
● Modify render rule
● Demo Link

2. Highlight Curvy Roads

● For some people curly
roads are dangerous.
For others they are
attractive

● Fetch vector tiles
from /mvt endpoint
and return curvy factor
e.g. <0.6 → red

● Modify render rule

● German crash data 2016 and 2017 from “destatis”

● OpenStreetMap speed limit data

● Use new storage feature for highway tag,
maxspeed and crash counter

3. Speed limit debate regarding safety

● 13500 km highways in Germany

● ~65% highways without speed limit
(official source is similar)

● 69.5% of deaths on segments
w/o speed limit

● Traffic density required →

● Signs could safe >100 lifes/a

Results:

3. Speed limit debate regarding safety

4. Plan Location of new Fire Station

How to find gaps in reachability?

→ Multi-source isochrone

5. Find Closest Restaurants

● Get ~18K restaurants:
bzgrep -B 1 restaurant germany.osm.bz2 | grep node

● Store restaurant count per edge

→ 5s on my old laptop

● Start in “Erfurt” city and explore Germany
9.3M nodes & 11.8M edges

● Return the list of “driving-time-sorted”
restaurants
→ <30s

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

0

500

1000

1500

2000

2500

3000

5. Histograms with Restaurants for Fun

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

0

500

1000

1500

2000

2500

3000

3500

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

0

500

1000

1500

2000

Erfurt

Graphhopper HQ in Munich

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

0

500

1000

1500

2000

Heidelberg
Univ.

Berlin

time/min

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250260270280290300310320330

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250260270280290300310320330

0

200

400

600

800

1000

1200

1400

1600

5. Find Closest Restaurants along a route

Or same algorithm, different problem: Find shortest path from location to river

Stuttgart → Hamburg (~35s)

Berlin → Mönchengladbach (~30s)

 for Data Analysis

advantages

● Fast

● Handles massive data well (even on weak computers)
avoid loading everything into memory via graph.dataaccess=MMAP_STORE

● Perfect for everything that requires road connectivity

disadvantages

● Need to select properties of the source data that go into the graph
max_speed, distance, avg_speed, max_height, max_width, road_class, surface, road_environment, toll, ...

● Certain use cases still require Java knowledge

Resources

● Different tweaks like curvy roads & find restaurants along a route:
https://github.com/graphhopper/graphhopper/tree/sotm_trials

● Crash stats: https://github.com/karussell/crashstats/

● Destatis: https://unfallatlas.statistikportal.de/

We are looking for contributors!

Contribute Code & Translations
https://github.com/graphhopper/graphhopper/contribute

Forum
https://discuss.graphhopper.com/

peter.karich@graphhopper.com

Flexible Routing with GraphHopper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 26

