OSM **Data Processing** with **PostgreSQL / PostGIS**

Jochen Topf jochentopf.com

OpenStreetMap

Studley Tool Chest | CC-BY-SA | https://www.flickr.com/photos/publicresourceorg/493813720

What we will talk about...

- Background: Relational Databases, Geodata
- Converting OSM Data
- Use Cases
- Tools
- Tips & Tricks, Odds & Ends

Background:

Relational Databases

Databases

Databases store and manipulate data.

There are many different ways to organize data...

All data is organized in Tables.

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

Data Types

Fields have a type:

Text Integer Numeric Date

ID	Name	Place	Age
1	Joe	Sydney	34
2	Jenny	New York	42
3	Jeremy	Moskow	55

Structured Query Language

SELECT Name FROM Members;

Name Joe Jenny Jeremy

SELECT Name, Age FROM Members;

Name	Age
Jenny	42
Joe	34
Jeremy	55

SELECT Name, Age FROM Members ORDER BY Age;

Name	Age
Joe	34
Jenny	42
Jeremy	55

SELECT Name, Age FROM Members WHERE Age > 40 ORDER BY Name;

Name	Age
Jenny	42
Jeremy	55

INSERT, UPDATE, DELETE

INSERT INTO Members (Name, Place, Age) VALUES ('Julia', 'London', 27);

UPDATE Members SET Place = 'Helsinki' WHERE Id = 2;

DELETE FROM Members WHERE Name = 'Jeremy';

INSERT, UPDATE, DELETE

INSERT INTO Members (Name, Place, Age) VALUES ('Julia', London', 27);

UPDATE Members SET Place = 'Helsinki' WHERE Id = 2;

DELETE FROM Members WHERE Name = 'Jeremy';

INSERT, UPDATE, DELETE

INSERT INTO Members (Name, Place, Age) VALUES ('Julia', 'London', 27);

UPDATE Members SET Place = 'Helsinki' WHERE Id = 2;

DELETE FROM Members WHERE Name = 'Jeremy';

Advanced SQL: Aggregate Functions

SELECT Avg(Age) FROM Members;

Advanced SQL: JOIN

The Magic

You define a structure ("schema").

You add data.

You ask for data back.

The database software does everything else.

Not so magic...

Performance can depend on structure

You still need to know a bit...

Indexes

Indexes allow faster access for some queries

Tradeoff: Indexes need space and need to be updated vs. faster queries

PostgreSQL

MySQL, MariaDB

SQLite

PostgreSQL

MySQL, MariaDB

SQLite

PostgreSQL

Open Source

lots of features

good documentation, books, etc.

popular, great eco-system, well-supported

powerful plugin system

Background:

Geodata

Simple Feature Model

We want to store this in a database

A Naive Approach...

ID	Name	X	Υ
1	Joe	151.22	-33.85
2	Jenny	-74.01	40.70
3	Jeremy	37.61	55.95

A Better Approach...

Text Integer Numeric Date Geometry

A Better Approach...

ID	Name	Geom
1	Joe	POINT(151.22 -33.85)
2	Jenny	POINT(-74.01 40.70)
3	Jeremy	POINT(37.61 55.95)

PostGIS: Plugin

CREATE EXTENSION postgis;

PostGIS: Datatypes

GEOMETRY

GEOMETRY (POINT) GEOMETRY (LINESTRING) GEOMETRY (POLYGON)

(also: GEOGRAPHY)

PostGIS: CRS

PostGIS knowns > 5000 Coordinate Systems (CRS/SRS)

Each Geometry associated with SRID.

Allows Transformations

Mix and match data sources

Most important CRSes:

WGS84 – EPSG:4326

Web Mercator – EPSG:3857

PostGIS: Datatypes

GEOMETRY (POINT, 4326) GEOMETRY (LINESTRING, 4326) GEOMETRY (POLYGON, 4326)

Coordinates

Always first X axis, then Y axis (as in mathematics).

so: longitude first, then latitude.

Well Known Text (WKT)

POINT(43)

LINESTRING(12 4, 3 2, 7, 9)

POLYGON((00, 40, 44, 04, 00))

MULTIPOINT / -LINESTRING / -POLYGON

PostGIS: Indexes

Normal indexes are good for 1-dimensional data

Spatial indexes are good for 2/3-dimensional data (R -tree)

PostGIS: Operations

Huge number of

operations on spatial data

PostGIS: ST_Contains

Image: CC-BY-NC-SA www.h2gis.org

PostGIS: ST_Union

www.h2gis.org

PostGIS: ST_Intersection

mage IC-SA lis.org

PostGIS: ST_Buffer

Image: CC-BY-NC-SA www.h2gis.org

PostGIS: ST_ShortestLine

Image: CC-BY-NC-SA www.h2gis.org

Converting OSM Data

OSM Data Model

Mismatch

OSM Data Model

Relational / Simple Feature Data Model

Mismatch

Conversion

OSM Data Model

Relational / Simple Feature Data Model

Conversion: Selection

What data do we actually need?

nodes, ways, relations?

user id, timestamp, version, ...?

which tags?

Conversion: Data Types

tags in OSM: key \rightarrow value (both text)

Map to: text, integer, boolean, enums, ...

Conversion: Tags \rightarrow **Attributes**

tags in OSM are flexible, table columns are fixed

Highway	Name	Oneway
primary	Main St	false
residential	Elm St	true
trunk		true

Conversion: Tags \rightarrow **Attributes**

tags in OSM are flexible, table columns are fixed

Highway	Name	Oneway
primary	Main St	false
residential	Elm St	true
trunk		true

Conversion: Tags \rightarrow **Attributes**

tags in OSM are flexible, table columns are fixed

Highway	Name	Oneway
primary	Main St	false
residential	Elm St	true
trunk		true

Conversion: hstore and JSON

Place	Name
city	de: München, en: Munich
city	de: Aachen, fr: Aix-la-Chapelle
village	de: Lübben, hsb: Lubin

Conversion: Tables

split data into tables...

few tables vs. many tables

by geometry type and/or by subject type
Split by Geometry Type

Tables:

nodes ways areas

Split by Geometry/Feature Class

Tables:

restaurants bus_stops addresses places highways railways rivers powerlines

lakes forests countries buildings

Conversion: Handling lists

nodes in ways

members in relations

tags in nodes, ways, or relations

Conversion: Way Nodes

Ways	WayNodes	Nodes
Wayld	Wayld	Nodeld
Version	Nodeld	Version
UserId	SeqNo	UserId
••••		

Conversion: Way Nodes

Conversion: Relation Members

similar to way nodes

but

array of tuple (type, id, role)

Conversion: Geometry

Nodes → Points

Ways -> LineStrings / Polygons

Multipolygon relations → Polygons

Route relations → MultiLineStrings

Conversion: Geometry

Generalized geometries

For lower zoom levels / small scales

Selection – Merging – Simplification

Conversion: Where?

Conversion can happen

1. before import in code

2. after import in the DB

Conversion: Where?

Conversion can happen

1. before import in code

2. after import in the DB

Conversion: Where?

Conversion can happen

1. before import in code

2. after import in the DB

flexible

Conversion: Assemble Lines

Take Locations from Nodes

Assemble them into LineStrings

Conversion: Node locations

Where to store node locations?

1. in the database

2. in specialized index

Node Location Store

Conversion: Polygons

Assemble (Multi)Polygons

from Ways/Relations

lots of trade-offs

not all software/schemas support updates

Two kinds of data: 1. The data you need for you application 2. The data needed to allow updating

Two kinds of data: 1. The data you need for you application 2. The data needed to allow updating

Where? Database? External Storage?

Snapshot vs. History

most use cases only need current OSM data

some need history of OSM data

Snapshot vs. History

most use cases only need current OSM data

some need history of OSM data

Much more effort needed !

Use Cases

Use Cases

API DB

Rendering

Geocoding

Routing

Analytics

API DB

Schema used in the main OSM database

PostgreSQL - No PostGIS !

Normal access via HTTP API

You can run your own

API DB

Needs all (also historical) data

Multiple writers, transactions

Allow bounding-box download

Allow read/write access

Create full dumps and replication diffs

Rendering

Turning data into maps

Render into bitmap, vector tiles, etc.

Rendering

Get all data for an area quickly

Multiple layers

Create generalized geometries

One writer, multiple reader

Regular updates

Geocoding

"Search"

Geocoding – Address to Location

Reverse Geocoding – Location to Address

Geocoding

Build address hierarchy

Quick "fuzzy" search

One writer, multiple reader

Regular updates

Routing

Using PostgreSQL plugin PgRouting Flexible, but slow

Routing

Build network of streets

Calculate weights

Find route through network
Analytics

Statistics

Comparing data

Conflating data

Many diverse needs

Example 1: Wind Power

Find a place that ...

... has lots of steady winds ... is near existing high voltage lines ... is far from residential areas

Example 2: Public Transport

How far is the nearest public transport stop?

How many people live where the nearest stop is more than x meters away?

Where should a new bus route go?

Example 3: OSM Contributors

Who are the most active OSM contributors?

What kinds of things do they map?

Where do they do their mapping?

Analytics

Flexible data model

Use of many geometric operations

Batch processing in multiple steps

Tools

psql

File Edit View Terminal Tabs Help										
sqrt=# se from high osm_id	lect osm_id, way_motorway osm_type	osm_type, limit 10; highway	highway, substr(ST_AsText(geom), 1, 46) as geom							
3700602 4068262 4068272 4068276 4071131 4071132 4071145 4071159 4100106 4259290 (10 rows) sqrt=#	way way	motorway motorway motorway motorway motorway motorway motorway motorway	LINESTRING(12.3957525 51.4045029,12.3940079 51 LINESTRING(12.1950993 51.4221162,12.195996 51. LINESTRING(12.1956903 51.4236168,12.194645 51. LINESTRING(12.2079569 51.426431,12.2111331 51. LINESTRING(12.375885 51.4084059,12.3754508 51. LINESTRING(12.355407 51.4120578,12.353102 51.4 LINESTRING(12.2989367 51.4155116,12.2967172 51 LINESTRING(12.1805927 51.3958729,12.1805298 51 LINESTRING(12.1999562 51.4310166,12.1979877 51 LINESTRING(12.5483554 51.3050722,12.5492398 51							

psql

File Edit View Terminal Tabs Help									
sqrt=# sel from highw	.ect osm_id, vay_motorway	osm_type, limit 10;	highway, substr(ST_AsText(geom), 1, 46) as geom						
osm_id	osm_type	highway	geom						
3700602	way	motorway	LINESTRING(12.3957525 51.4045029,12.3940079 51						
4068262	way	motorway	LINESTRING(12.1950993 51.4221162,12.195996 51.						
4068272	way	motorway	LINESTRING(12.1956903 51.4236168,12.194645 51.						
4068276	way	motorway	LINESTRING(12.2079569 51.426431,12.2111331 51.						
4071131	way	motorway	LINESTRING(12.375885 51.4084059,12.3754508 51.						
4071132	way	motorway	LINESTRING(12.355407 51.4120578,12.353102 51.4						
4071145	way	motorway	LINESTRING(12.2989367 51.4155116,12.2967172 51						
4071159	way	motorway	LINESTRING(12.1805927 51.3958729,12.1805298 51						
4100106	way	motorway	LINESTRING(12.1999562 51.4310166,12.1979877 51						
4259290	way	motorway	LINESTRING(12.5483554 51.3050722,12.5492398 51						
(10 rows)									

sqrt=#

Editor

pgadmin

Image: pgAdmin 4 File v Object v	Tools	∽ Help ∽							
Browser 7 E T	Dashb	oard Proper	ties SQL	Statistics	Dependencies	Dependents	Fedit Data - pem Fedit Data - geo_test on postgres@Postgr ← → ×		
✓ ● geo_test	Query	Query Editor Query History							
> 69 Casts	1 SELECT * FROM public.country outlines								
> 😵 Catalogs	2								
> C Event Triggers									
> The Extensions									
> Foreign Data wrappers							0		
 Schemas (2) 	Data O	utput Explai	n Messag	es Notifica	ations		Geometry Viewer		
 ✓ ♦ public 		ogc_fid [PK] integer	id character vary	ying char	ne racter varying	geometry4326 geometry	+ Suomi		
> A Collations	1	1	AFG	Afgh	nanistan	0103000020E61			
> 🏠 Domains	2	3	ALB	Alba	ania	0103000020E61			
> B FTS Dictionarias	3	7	ATA	Anta	arctica	0106000020E61	the second second		
> Aa FTS Parsers	4	18	BHS	The	Bahamas	0106000020E61	Deutschland		
>	5	6	ARM	Arm	enia	0103000020E61	YEDAHA KASAYCTAN		
> 📑 Foreign Tables	6	314	QAT	Qata	ar	0103000020E61	re România		
> (i) Functions	7	365	ATA	Anta	arctica	0106000020E61	Italia		
> 💽 Materialized Views	8	269	KOR	Sout	th Korea	0103000020E61	Türkiye Türkmenistan		
> h.3 Sequences	9	26	BTN	Bhut	tan	0103000020E61	EAAdda Warning		
✓ I Tables (6)	10	65	GNQ	Equa	atorial Guinea	0103000020E61	معانستان الباد العراق		
> = boundary_claims	11	48	ECU	Ecua	ador	0103000020E61	sto		
> = country_outlines	12	8	ATF	Fren	ich Southern and	0103000020E61	الم مصر ليبيا الم		
> 🚍 random_geometries'	13	449	CS-KM	Kos	ovo	0103000020E61	India India		
> 🔠 random_geometries:	14	92	KWT	Kuw	vait	0103000020E61	Niger Ilmeelu Ilmeelu		
>	15	19	BIH	Bosi	nia and Herzego	0103000020E61	Inad state		
 Irigger Functions 	16	225	DOM	Dom	ninican Republic	0103000020E61	Nigeria Ködörösése Att Att Att Att Att Att Att Att Att At		
> Types	17	131	PRI	Puer	rto Rico	0103000020E61	Centrafricaine Soomaaliya		
> topology	18	20	BLR	Bela	irus	0103000020E61	République République		
> mem clean	19	325	SLV	El Sa	alvador	0103000020E61	democratique du Congo © OpenStreetMap		

Osmosis

https://wiki.osm.org/wiki/Osmosis

Use case: API DB, Analytics Updates: Yes Schema: Several Status: Not being maintained

Osmosis Schemas

API DB (version 0.6)

PostGIS Snapshot Schema (uses hstore)

PostGIS Simple Schema (no hstore)

(API DB MySQL < 0.6)

osm2pgsql

Used in "standard" OSM rendering toolchain

https://wiki.osm.org/wiki/Osm2pgsql

Use case: Rendering Updates: Yes Schema: Few tables (hstore optional) Status: Maintained

Imposm3

Alternative rendering toolchain

https://imposm.org

Use case: Rendering Updates: Yes Schema: Many tables Status: Actively maintained

Nominatim

Standard OSM search/geocoding

https://nominatim.org

Use case: (Reverse) Geocoding Schema: Optimized for geocoding Status: Actively maintained

Uses osm2pgsql (with special plugin)

Osmium

https://osmcode.org/osmium-tool/

Use case: Analytics, (Rendering)

Updates: No Schema: Simple Status: Actively maintained Simple to run for ad-hoc use

osm-postgresql-experiments

Experimental, very flexible data import

https://github.com/osmcode/osm-postgresql-experiments

Use case: Rendering, Analytics Updates: (Yes) Schema: Flexible Status: Experimental

osm2pgrouting

Importer für PgRouting

https://github.com/pgrouting/osm2pgrouting

Use case: Routing Updates: No Schema: PgRouting Status: Maintained

Tips & Tricks

Odds & Ends

How much disk space do I need?

How much memory do I need?

How long will an import take?

hundreds of Gbytes for full planet

How much disk space do I need?

How much memory do I need?

How long will an import take?

hundreds of Gbytes for full planet

How much disk space do I need?

How much memory do I need?

More! How long will an import take?

hundreds of Gbytes for full planet

How much disk space do I need?

How much memory do I need?

More! How long will an import take?

many hours if not days for planet

Start small...

Do not try to import the whole planet at first!

Start small (e.g. with data for a city) and work your way up

Minimize data

1. Filter data outside DB if you can

2. Import data into DB

Importing Data

1. load data

2. create indexes

3. ANALYZE

Performance Tuning

You will need to tune your PostgreSQL!

Settings in postgresql.conf: shared_buffers, work_mem, maintenance_work_mem, fsync, synchronous_commit, checkpoint_timeout, checkpoint_completion_target, ...

Indexes

Learn how indexes work and when they are used

Also for spatial indexes!

Use EXPLAIN command

The COPY command

COPY instead of INSERT

more efficient, use it if possible

Learning Curve

PostgreSQL / PostGIS is an incredible powerful tool

"Magic" working of PostgreSQL can be surprising

Configure the logs and look at them

Learning Curve

Spatial operations are extra magic!

Again: Start small

Always growing

Database will grow over time (not only because of more OSM data)

VACUUM

Still grow more

Other SQL Databases

MySql, MariaDB

Oracle Spatial

Sqlite (Library, not Server)

Other SQL Databases

geodata support lacking

MySql, MariaDB

Oracle Spatial

Sqlite (Library, not Server)

Other SQL Databases

geodata support lacking

MySql, MariaDB

Oracle Spatial

proprietary

Sqlite (Library, not Server)
Other SQL Databases

geodata support lacking

MySql, MariaDB

Oracle Spatial

proprietary

Sqlite (Library, not Server)

not as powerful, problems with huge datasets, but can be useful for some applications

Jochen Topf jochentopf.com jochen@topf.org

https://www.floss-shop.de/de/floss-merchandise/stofftiere/40/postgresql-elefant