
OSM
Data Processing

with
PostgreSQL / PostGIS

Jochen Topf
jochentopf.com

PostgreSQL

OpenStreetMap

Studley Tool Chest | CC-BY-SA | https://www.flickr.com/photos/publicresourceorg/493813720

From help.openstreetmap.org

What we will talk about...

● Background: Relational Databases, Geodata

● Converting OSM Data

● Use Cases

● Tools

● Tips & Tricks, Odds & Ends

▌▌ ►

Background:

Relational
Databases

Databases

Databases store and manipulate data.

There are many different ways to organize data...

Relational Databases

All data is organized in Tables.

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Data Types

Fields have a type:

Text
Integer

Numeric
Date

...

Relational Databases

ID Name Place Age

1 Joe Sydney 34

2 Jenny New York 42

3 Jeremy Moskow 55

Table Members:

Structured Query Language

Data Access using SQL

SELECT Name
 FROM Members;

Name

Joe

Jenny

Jeremy

Data Access using SQL

SELECT Name, Age
 FROM Members;

Name Age

Jenny 42

Joe 34

Jeremy 55

Data Access using SQL

SELECT Name, Age
 FROM Members
 ORDER BY Age;

Name Age

Joe 34

Jenny 42

Jeremy 55

Data Access using SQL

SELECT Name, Age
 FROM Members
 WHERE Age > 40
 ORDER BY Name;

Name Age

Jenny 42

Jeremy 55

INSERT, UPDATE, DELETE
INSERT INTO Members (Name, Place, Age)

 VALUES (’Julia’, ’London’, 27);

UPDATE Members SET Place = ’Helsinki’
 WHERE Id = 2;

DELETE FROM Members
 WHERE Name = ’Jeremy’;

INSERT, UPDATE, DELETE
INSERT INTO Members (Name, Place, Age)

 VALUES (’Julia’, ’London’, 27);

UPDATE Members SET Place = ’Helsinki’
 WHERE Id = 2;

DELETE FROM Members
 WHERE Name = ’Jeremy’;

INSERT, UPDATE, DELETE
INSERT INTO Members (Name, Place, Age)

 VALUES (’Julia’, ’London’, 27);

UPDATE Members SET Place = ’Helsinki’
 WHERE Id = 2;

DELETE FROM Members
 WHERE Name = ’Jeremy’;

Advanced SQL: Aggregate
Functions

SELECT Avg(Age)
 FROM Members; Avg

43

Advanced SQL: JOIN

The Magic

You define a structure (“schema“).

You add data.

You ask for data back.

The database software does everything else.

Not so magic...

Performance can depend on structure

You still need to know a bit…

Indexes

Indexes allow faster access
for some queries

Tradeoff: Indexes need space and need to be
updated vs. faster queries

Relational Databases

PostgreSQL

MySQL, MariaDB

SQLite

...

Relational Databases

PostgreSQL

MySQL, MariaDB

SQLite

...

PostgreSQL

Open Source

lots of features

good documentation, books, etc.

popular, great eco-system, well-supported

powerful plugin system

Background:

Geodata

Simple Feature Model

Point LineString Polygon

MultiPoint MultiLineString MultiPolygon

We want to store this
in a database

A Naive Approach...

ID Name X Y

1 Joe 151.22 -33.85

2 Jenny -74.01 40.70

3 Jeremy 37.61 55.95

A Better Approach...

Text
Integer

Numeric
Date

Geometry
...

A Better Approach...

ID Name Geom

1 Joe POINT(151.22 -33.85)

2 Jenny POINT(-74.01 40.70)

3 Jeremy POINT(37.61 55.95)

PostGIS: Plugin

CREATE EXTENSION postgis;

PostGIS: Datatypes

GEOMETRY

GEOMETRY (POINT)
GEOMETRY (LINESTRING)

GEOMETRY (POLYGON)

(also: GEOGRAPHY)

Source: Wikipedia

Source: Wikipedia

Source: Wikipedia

Source: Wikipedia

Source: Wikipedia

PostGIS: CRS

 PostGIS knowns > 5000 Coordinate Systems
(CRS/SRS)

Each Geometry associated with SRID.

Allows Transformations

Mix and match data sources

Most important CRSes:

WGS84 – EPSG:4326

Web Mercator – EPSG:3857

PostGIS: Datatypes

GEOMETRY (POINT, 4326)
GEOMETRY (LINESTRING, 4326)

GEOMETRY (POLYGON, 4326)

Coordinates

Always first X axis, then Y axis
(as in mathematics).

so: longitude first, then latitude.

Well Known Text (WKT)

POINT(4 3)

LINESTRING(12 4, 3 2, 7, 9)

POLYGON((0 0, 4 0, 4 4, 0 4, 0 0))

MULTIPOINT / -LINESTRING / -POLYGON

PostGIS: Indexes

Normal indexes are good for
1-dimensional data

Spatial indexes are good for
2/3-dimensional data

(R -tree)

PostGIS: Operations

Huge number of

operations on spatial data

PostGIS: ST_Contains

Image:
CC-BY-NC-SA
www.h2gis.org

http://www.h2gis.org/

PostGIS: ST_Union

Image:
CC-BY-NC-SA
www.h2gis.org

http://www.h2gis.org/

PostGIS: ST_Intersection

Image:
CC-BY-NC-SA
www.h2gis.org

http://www.h2gis.org/

PostGIS: ST_Buffer

Image:
CC-BY-NC-SA
www.h2gis.org

http://www.h2gis.org/

PostGIS: ST_ShortestLine

Image:
CC-BY-NC-SA
www.h2gis.org

http://www.h2gis.org/

Converting
OSM Data

OSM Data Model

Mismatch

OSM
Data Model

Relational /
Simple Feature

Data Model

Mismatch

OSM
Data Model

Relational /
Simple Feature

Data Model

Conversion

Conversion: Selection

What data do we actually need?

nodes, ways, relations?

user id, timestamp, version, …?

which tags?

Conversion: Data Types

tags in OSM:
key → value (both text)

Map to:
text, integer, boolean, enums, ...

Conversion: Tags → Attributes

tags in OSM are flexible, table columns are fixed

Highway Name Oneway

primary Main St false

residential Elm St true

trunk true

Conversion: Tags → Attributes

tags in OSM are flexible, table columns are fixed

Highway Name Oneway

primary Main St false

residential Elm St true

trunk true

Conversion: Tags → Attributes

tags in OSM are flexible, table columns are fixed

Highway Name Oneway

primary Main St false

residential Elm St true

trunk true

Conversion: hstore and JSON

Place Name

city de: München, en: Munich

city de: Aachen, fr: Aix-la-Chapelle

village de: Lübben, hsb: Lubin

Conversion: Tables

split data into tables…

few tables vs. many tables

by geometry type and/or by subject type

Split by Geometry Type

Tables:

nodes
ways
areas

Split by Geometry/Feature Class

Tables:

highways
railways

rivers
powerlines

...

restaurants
bus_stops
addresses
places
...

lakes
forests

countries
buildings

...

Conversion: Handling lists

nodes in ways

members in relations

tags in nodes, ways, or relations

Conversion: Way Nodes

WayId

NodeId

SeqNo

WayId

Version

UserId

...

 Ways WayNodes Nodes

NodeId

Version

UserId

...

Conversion: Way Nodes

WayId

Version

UserId

NodeIds

 Ways Nodes

NodeId

Version

UserId

...
Array of Ids

Conversion: Relation Members

similar to way nodes

but

array of tuple (type, id, role)

Conversion: Geometry
Nodes → Points

Ways → LineStrings / Polygons

Multipolygon relations → Polygons

Route relations → MultiLineStrings

...

Conversion: Geometry

Generalized geometries

For lower zoom levels / small scales

Selection – Merging – Simplification

Conversion: Where?

Conversion can happen

1. before import in code

2. after import in the DB

Conversion: Where?

Conversion can happen

1. before import in code

2. after import in the DB

Conversion: Where?

Conversion can happen

1. before import in code

2. after import in the DB

fast

flexible

Conversion: Assemble Lines

Take Locations from Nodes

Assemble them into LineStrings

Conversion: Node locations

Where to store node locations?

1. in the database

2. in specialized index

Node Location Store

Conversion: Polygons

Assemble (Multi)Polygons

from Ways/Relations

One-off
Import

lots of trade-offs

not all software/schemas support updates

Import +
Updates

Complete data needed for
updates

Complete data needed for
updates

Complete data needed for
updates

Two kinds of data:
1. The data you need for you application

2. The data needed to allow updating

Complete data needed for
updates

Two kinds of data:
1. The data you need for you application

2. The data needed to allow updating

Where? Database? External Storage?

Snapshot vs. History

most use cases only need
current OSM data

some need
history of OSM data

Snapshot vs. History

most use cases only need
current OSM data

some need
history of OSM data

Much more effort needed !

Use Cases

Use Cases

API DB

Rendering

Geocoding

Routing

Analytics

API DB

Schema used in the main OSM database

PostgreSQL - No PostGIS !

Normal access via HTTP API

You can run your own

API DB
Needs all (also historical) data

Multiple writers, transactions

Allow bounding-box download

Allow read/write access

Create full dumps and replication diffs

Rendering

Turning data into maps

Render into bitmap, vector tiles, etc.

Rendering
Get all data for an area quickly

Multiple layers

Create generalized geometries

One writer, multiple reader

Regular updates

Geocoding

“Search“

Geocoding – Address to Location

Reverse Geocoding – Location to Address

Geocoding

Build address hierarchy

Quick “fuzzy“ search

One writer, multiple reader

Regular updates

Routing

Using PostgreSQL plugin PgRouting

Flexible, but slow

Routing

Build network of streets

Calculate weights

Find route through network

Analytics

Statistics

Comparing data

Conflating data

Many diverse needs

Example 1: Wind Power

Find a place that …

… has lots of steady winds
… is near existing high voltage lines

… is far from residential areas

Example 2: Public Transport

How far is the nearest public transport stop?

How many people live where the nearest
stop is more than x meters away?

Where should a new bus route go?

Example 3: OSM Contributors

Who are the most active OSM contributors?

What kinds of things do they map?

Where do they do their mapping?

Analytics

Flexible data model

Use of many geometric operations

Batch processing in multiple steps

Tools

psql

psql

Editor

pgadmin

Osmosis

https://wiki.osm.org/wiki/Osmosis

Use case: API DB, Analytics
Updates: Yes

Schema: Several
Status: Not being maintained

https://wiki.osm.org/wiki/Osmosis

Osmosis Schemas

API DB (version 0.6)

PostGIS Snapshot Schema (uses hstore)

PostGIS Simple Schema (no hstore)

(API DB MySQL <0.6)

osm2pgsql

Used in “standard“ OSM rendering toolchain

https://wiki.osm.org/wiki/Osm2pgsql

Use case: Rendering
Updates: Yes

Schema: Few tables (hstore optional)
Status: Maintained

Imposm3

Alternative rendering toolchain

https://imposm.org

Use case: Rendering
Updates: Yes

Schema: Many tables
Status: Actively maintained

Nominatim
Standard OSM search/geocoding

https://nominatim.org

Use case: (Reverse) Geocoding
Schema: Optimized for geocoding

Status: Actively maintained

Uses osm2pgsql (with special plugin)

Osmium

https://osmcode.org/osmium-tool/

Use case: Analytics, (Rendering)

Updates: No
Schema: Simple

Status: Actively maintained
Simple to run for ad-hoc use

osm-postgresql-experiments

Experimental, very flexible data import

https://github.com/osmcode/osm-postgresql-experiments

Use case: Rendering, Analytics
Updates: (Yes)

Schema: Flexible
Status: Experimental

osm2pgrouting

Importer für PgRouting

https://github.com/pgrouting/osm2pgrouting

Use case: Routing
Updates: No

Schema: PgRouting
Status: Maintained

https://github.com/pgrouting/osm2pgrouting

Tips & Tricks

Odds & Ends

Quantity Structure

How much disk space do I need?

How much memory do I need?

How long will an import take?

Quantity Structure

How much disk space do I need?

How much memory do I need?

How long will an import take?

hundreds of Gbytes
for full planet

Quantity Structure

How much disk space do I need?

How much memory do I need?

How long will an import take?

hundreds of Gbytes
for full planet

More!

Quantity Structure

How much disk space do I need?

How much memory do I need?

How long will an import take?

hundreds of Gbytes
for full planet

 many hours
if not days for planet

More!

Start small...

Do not try to import the whole planet at first!

Start small
(e.g. with data for a city)

and
work your way up

Minimize data

1. Filter data outside DB if you can

2. Import data into DB

Importing Data

1. load data

2. create indexes

3. ANALYZE

Performance Tuning

You will need to tune your PostgreSQL!

Settings in postgresql.conf:
shared_buffers, work_mem, maintenance_work_mem, fsync,

synchronous_commit, checkpoint_timeout,
checkpoint_completion_target, ...

Indexes

Learn how indexes work and
when they are used

Also for spatial indexes!

Use EXPLAIN command

The COPY command

COPY instead of INSERT

more efficient, use it if possible

Learning Curve

PostgreSQL / PostGIS
is an incredible powerful tool

“Magic“ working of PostgreSQL
can be surprising

Configure the logs and look at them

Spatial operations are extra magic!

Again: Start small

Learning Curve

Always growing

Database will grow over time
(not only because of more OSM data)

VACUUM

Still grow more

Other SQL Databases

MySql, MariaDB

Oracle Spatial

Sqlite (Library, not Server)

Other SQL Databases

MySql, MariaDB

Oracle Spatial

Sqlite (Library, not Server)

geodata support lacking

Other SQL Databases

MySql, MariaDB

Oracle Spatial

Sqlite (Library, not Server)

geodata support lacking

proprietary

Other SQL Databases

MySql, MariaDB

Oracle Spatial

Sqlite (Library, not Server)

geodata support lacking

proprietary

not as powerful, problems with huge datasets,
but can be useful for some applications

THE
END

Jochen Topf
jochentopf.com

jochen@topf.org

https://www.floss-shop.de/de/floss-merchandise/stofftiere/40/postgresql-elefant

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146

